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production and transfer range,.

T respectively
u,v Eulerfan and r i velocities.
This paper presents a multiphase turbulence res;ectively Lagrangian velo
closure employing one transport equation. namely V. Av volume and averaging volume. respectively
the turbulence kinetic energy equation. The )

proposed form of this equation is different from

xi.xj.xn Cartesian coordinates

the earlier formulations in some aspects. The y distance from the wall
power spectrum of the carrier fluid is divided a concentration of volume
into two regions, which interact in different ways € dissipation rate of turbulence kinetic
and at different rates with the suspended eneTgy
particles as a function of the particle-eddy size n Kolmogorov length scale
ratio and density ratio. The length scale is K wave number
described algebraically. A mass/time averaging H dynamic viscosity
procedure for the momentum and kinetic energy P density
equations is adopted. The resulting turbulence a turbulent Schmidt/Prandtl number
correlations are modeled under less restrictive T shear stress
assumptions comparative to the previous work. The
closures for the momentum and kinetic energy Subscripts
equations are given. Comparisons of the
predictions with experimental results on i.j.n denote Cartesian coordinates (= 1.2.3)
liquid-solid Jet and gas-solid pipe flow show e eddy
satisfactory agreement. k turbulence kinetic energy

K flow component K
NOMENCLATURE KP phase K in the production range

KT phase K in the transfer range
a amplitude ratio 4 laminar
b body force L.S denote liquid and solid, respectively
- P production range
¢, C¢1. C¢2. C¢3. C‘4. C¢5. & Cu = constants ¢ turbulent
d particle diameter T transfer range
D turbulent diffusion coefficient for solid Tot total

phase 2 average over area

E(x) energy spectrum 3 dissipation rate of turbulence kinetic
f flow variable energy
(IK)_K interaction term Superscripts
J flux vector for a variable ¢
24 -

f mass average of f
k kinetic energy of turbulence £t turbulence fluctuation of f
2 length scale f fluctuation of f at low wave number
NS Stokes number (production range) "

; £ fluctuation of f at interme iate wave
K(r.t) phase distribution function. Eq. (1) munber (transfer range)
P pressure P production
r position vector T transfer
Re Reynolds number based on the most f¥ fK volume/time and mass/time averages of f
energetic eddy size over K
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1. INTRODIXTION

Multiphase flows are widely applied in
engineering processes from chemical. petroleum,
mining and other industries. Yarious theoretical
and experimental techniques for the investigation
of those flows are available. Some of them are a
straightforward extension from the single phase
flow models by introducing some ad hoc
modifications. Other investigations originate
from the gas-solid flow (Soo. 1983) or fluidized
bed models (Wang et al., 188S).

Increasing concern for the prediction of
turbulent multiphase flows have been noticed
during the last twenty years (Danon et al. (1974),
Al-Taweel and Landay (1977), Genchev and Karpuzov
(1980) , Melville and Bray (1979),
Sharma (1978), Michaelides and Farmer (1983), and
Shuen et al. (1983)).  Two equation turbulence
models have been proposed for dilute particulate
flows by Elghobashi et a). (1982, 1983, 1984) and
Crowder et al. (1984). Algebraic and one equation
turbulence models have been suggested also for
dense liquid-solid flows (Roco et al., 1983, 1985,
1986) in which the particle-particle {nteractions
play an important role besides the fluid-fluid and
fluid-solid interactions. Most of these studies
as well as other earlier investigations have some
limitations. In the above mentioned studies the
response of solids to the turbulent fluctuations

of the carrier fluid is obtained under
restrictions similar to those refered by Hinze
(1975, p. 460). which limit their use. In
addition to that, empirical constants and
empirical functions are usually introduced i{n
these models.

The purpose of the Present paper is

1) To Propose a specific mass/time averaging
approach for multiphase turbulent flows. Even if
the approach {s developed for incompressible flow,
its application for other multiphase flows is
foreseen: From the liquid-solid interaction forces
only the drag force is considered in this paper.

11} To improve the one-equation turbulence
model reported in [28] by including the modulation
of turbulence by particles as a function of
particle size and density.

ii1) To test the proposed model with other
models and experimental dara for various two-phase
flows, without adopting any adjusting empirical
coefficients.

2. MIXED AVERAGING APPROACH

The  continuum transport equations for
multiphase flows can be obtained by assuming a
continuum medium with averaged field quatities by
using either time. local volume, local mass or
spectral averaging (see Buyevich (1971). Soo
(1967). Vernier and Delhaye (1968)., Hetsroni
(1982)). The averaging for muitiphase flow
Systems may be performed in various ways. Mass

averaging technique was applfed by Abou-Arab
(1985) for turbulent incompressible and
compressible flows. To express the spatial

nonuniformities and interactions between the flow
components Roco and Shook (1985) have developed a
specific volume/time averaging technique for
turbulent multicomponent systems. 1in which the
size of the averaging volume 4v is related to the
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turbulence scale. Since the Eulerian description

of the flow 1s more convenient than the Lagrangian
description and there are more comprehensive
mathematical schemes for such formulation,
transformed the volume/time averaging into double
time averaging. For any flow function f and any
component K in the mixture, at a position r and

time t
?K ( ) 1 jt+AT/2
ot) = — < f, > dt (1)
8T Jeatrs K
where
AT = time averaging interval corresponding to
the turbulence production range (AT - ®).
1 t+de/2
< IK > = It J £{r.7) K(r.7) R(r-t) dr
t-At/2
(2a)
= intrinsic averaging of f over At and
the flow component K.

At = Fulerian time scale for the most energetic
eddies =j~ R(7~¢)dr (corresponding to the
°

Taylor's length scale). Note that 4t<CAT,
but much larger than particle residence time

at r.
1 if the considered flow component
K(r.7) = resides at point rand time 7 (2b)
0 otherwise
= phase distribution function
—_—
VOV e
R(t-t) = Y(YV'(t-7) (2¢)
Vi2(1)
= auto-correlatfon coefficient of the
velocity fluctuations of the most
energetic eddfes (Taylor's scale)
The time averaging over 4t corresponds to the

averaging over local volume 4v. The dimension of
Av is given by the turbulence mixing length. and
At = (length scale of Av)/(mean velocity) [29].
By 1ntegrating over a flow component K its
interfaces with flow components become
boundary of integration, and the Interaction terms
are derived in a straighforward manner ip
differentia] formulation. According to (1). any
Instantaneous value differs from the mean value by
a turbulence fluctuatfon with two components f.

K
and fﬁ:
fo=F, +f" =27 4+ + f
K K K K K (3)
where
f§ = fK - < fK > (1)

= spatial nonuniformitfes within v (or
temporal nonuniformities vithin At)

. <X
fg =<t >-T (5)



= temporal nonuniformities of < fK > within AT.

Since the averaging domain {4v or At) has the
dimensions of the mixing length or Eulerian time

scale, respectively, the turbulence fluctuation fK

corresponds to the turbulence transfer range. The
temporal nonuniformities fk reflect the turbulence

fluctuations in the production range.

By averaging with formla (1)
{nstantaneous conservation equations., one obtains
the double time averaged equations. The
formulation 1s equivalent to the volume/time
averaging. The momentum and kinetic energy
equations are given in Appendix A.

the point

The local mass average of f over a flow

component K is denoted Tk. It {s obtained by

applying (1). 1in which the phase distribution
function K(r.7) is weighted by the specific mass

Py-

In this paper we model the phase interaction
by using spectral analysis and suggest a closure
of the mass averaged equations for linear momentum
and kinetic energy. The averaged equations are
initially written with all the terms. and then
simplified formulations for various flow
conditions are suggested.

3. ENERGY SPECTRUM AND SOLIDS - EDDY INTERACTION

It is well accepted that turbulence |is
characterized by fluctuating motions defined by
an energy spectrum (Tennekes and Lumely (1972)).
Single time scale models, which are normlly used
for the prediction of turbulent flows, seems
simplistic because different turbulent
{nteractions are associated with different parts
of the energy spectrum (Hanjalic' et al. (1979)).
A typical energy spectrum can be divided into
three regions. The first region is the production
region of large eddies and low wave number. The
third region is the dissipation region with small
eddies and high wave number, in which the total
kinetic energy produced at the lower wave number

is dissipated. The intermediate range of wave
numbers represents the Taylor's transfer range.
The total kinetic energy k of turbulence may be
divided into production range (kP) and transfer

range (kT) because there 1is negligible kinetic
energy in the dissipation range:

k = kP + kT (6)
where
1 2
kP=§ui f (73)
1 ey
kp =3y ()

= fluctuating velocities in the

production and transfer range.
respectively.

149

4
x !
:J Zone ! | Zone @2  Zone #3
L)
> |
g |
[ =
o |
w | E |
| |
g 3
L . :
o L3
S I d l
w | { |
| | i |
ds n
Wave Number, K (m-!)
Figure 1. Schematic showing the relative particle

size to different eddy sizes in the
energy spectrum.

This partitioning of the energy spectrum was shown
to be important for swirling flows (Chen (1986)).
and hetrogeneous mixture flows such as two-phase
jet (Al-Taweel and Landau (1977)).

By using spectral analysis in conjunction
with mass/time averaging some additional turbulent

correlations will result in the mixture flow
equations comparative to homogenous flows. These
correlations can be classified into five

categories:

i) Eddy-eddy interaction

11) Eddy-mean flow interaction
111) Eddy-particle interaction
iv) Particle-mean flow interaction

v) Particle-particle interaction (for dense
suspension flow).

These correlations have to be modeled. Since the
suspended particles may be of different sizes and
different materials. their response to the carrier
fluid fluctuations will vary as a function of the
mean and fluctuating properties of the flow. The
present work will consider a two-way interaction

mechanism between solid particles and fluid
vorticies in dilute suspensions. This interaction
mechanism depends on the ratio between the

particle size dS and the turbulent vortex (eddy)
size le. These length scales are compared with
the turbulence dissipation micro-scale (n).

To determine the perticle-eddy {nteraction

the energy spectrum for multiphase flow system is
divided into three typical zones (Figure 1):

1. “Large vortex zone'  (#1). where the
turbulence energy is extracted from the mean
flow by low frequency eddies. Here. the eddy

length scale eel i{s larger than the particle
size ds:



el > dS >n (8a)
2. "Medium vortex zone" (#2). where the solid
particles are about the same sjize with the
vortex size, {.e. :
162 X ds > 7 (8b)
3. "Small  vortex zone" (#3). which would
correspond to the Kolmogorov's length scale,
i.e.
dS > 1e3 X n (8¢)
In zone #1 the solid particles generally follow

the motion within a vortex, and have an energy
dissipation effect. The particle response to the
turbulent fluctuations (turbulence modulation) is
fully determined (see Hinze, 1975). In the small
vortex zone #3 the solid particles can not
significantly affect the turbulence
microstructure. For the intermediate zone #2 a
linear variation of the particle response is
considered. This partitioning allows for the
particles-nonuniform size eddies interaction to be
efficiently modeled.

The present closure formulation originates
from the idea of subgrid scale modeling. If this
idea is to be accepted. any flow quantity u, v, a.
k. .... etc. my be separated {nto three parts
according to (3), where fk and IE define the

fluctuations in the production and transfer ranges
of the energy spectrum, respectively. By starting
from the particle equation of motion in fts
general form. the relation between the particle
motion and different fluid eddies can be
determined, and  from here the fluctuation

components fk and fﬁ (see section 6).

4. COOMPOSED AVERAGED EQUATIONS
4.1 Mean Flow Coverning Equations

The mass/time averaged momentum equation

(Appendix A. Eq. A2) with f; = £+ f; yields:

a - - — v s o
Pk 3 (s e e BT AT )

Time rate change of the mean flow convection

a - - -
Py 5?; [aKuKiqu]

Nean floo convection

3z
* o 5§; [ayug;ugy * KUK VK5 )

Inertial effect

a - 0 T e e - — T
Py 5?; (Laguy;ug g Yok U]+ g legugg vapell

Collisional/Inertial Effects

M O il *oaluggug Uk s 5]
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*UKi OKUKg T UG KUKVt OKYK UK

M Sl TR NTNRTVR KUKVt K )

= playby; + apby, + %Py * abyy + aTh ]
Body force

8 == - — —= T
T3] LR ogpg v agpg ¢ apy v A

Pressure effect

i D S
+ [pK 5;; * Py 5;: * Py axi * Py 5;: +...]
M- [a—}\;K* aKTKIJl a'l\"TkIji

Frictional effect

M ¥ ST TR I G e (%)
Phase interaction

where K is a flow component, bKi 1s the body force

in the 1-th direction, and is the

projection in  the i-th
interaction vector (lK)—K

Oy )

direction of the

Equation (9) contains correlations which are
related to the production and transfer wave number
ranges of the turbulence spectrum. It contains
also mixed correlations.

4.2 The Kinetic Energy Equation

Similar to the mean flow governing equation
the mass/time averaging form of the turbulent
kinetic energy equation can be derived for a flow
component K. The exact form of this equation for
steady state turbulent flow is given in Appendix A
(Eq. A5). It contains more than one hundred
correlations which are related to the eddies in
the production and transfer ranges as well as some
mixed correlatjons, However, only some of these
are predominant in g given flow situation as a
function of relative particle-vortex size and
density ratio.

4.3 Some Modeling Principles and Assumptions

By analysing the derived mean momentum and
kinetic €nergy conservation equations. it can be
easily recognized that some modeling assumptions
must be made, based on the physical interpretation
and the nature of each term. Previous
experimental and theoretica] findings can help in
model ing "collectively" similar terms with minimum
number of empirical constants. Secondly. carrying
out an order of magnitude analysis for different
correlations which appear  fn the governing
equations some terms may be neglected. Thirdly,
the micromechanics which control the ability of
the flow variables to correlate with each other
and the factors affecting the mgnitude of these
correlations should be considered. With the
previous remarks in mind. one can assume for the
sake of simplicity that:




1) The correlations between the large eddies
from the production range and the small
eddies from the transfer range (mixed

correlations e.g. u u") can be neglected as
they originate differently end they are
related to different ranges of the power
spectrum. Similar assumptions are accepted
in the classical single fluid turbulence
theory.

2) The void fraction fluctuations occur mainly
at low frequencies 1.e.

(10)
(1)

with a’ > a”
This is a simplifying assumption which is
acceptable for such complicated problems. If
the particles are of smal]l diameter their
concentration is relatively uniform
distributed in the Taylor length scale. High
void fractions are mostly associated with
large size and high density particulate
flows. These large size particles are mainly
fluctuating at low frequencies due to its
high inertia, hence they in turn correlate
weakly at high frequencies.

3) The correlations of higher order than three,

—_— ..o
for instance a'u’'dp /axi. uiuJ 6xj

etc.. are neglected. These are at least an
order magnitude smaller than those of the
third order (see Hanjalic' and Launder

(1572)).

4) Pressure diffusion contribution to the total

turbulent diffusion {n the kinetic energy
equation will be neglected because of {ts
relatively small magnitude (Hanjalic® and

Launder (1972)).

5) The Boussinesq gradient type approximation is
adopted for modeling of different fluxes and
triple correlations, with assumptions similar
to Elghobashi and Abou-Arab (19683) and Roco
and Mahadevan (1986)

6) The following constitutive relations are
employed for the shear stress of carrier
fluid:

Fu, &
- i SRR N1 iy
- puiuJ pLP(axJ * axx) 3 kLPbxg 3 uLPéijun n
(12)
du, &
o JEE T T 2 _2 -
puguy = “LT(axj axi) 3 k1857 3 #1050
13)
while the total shear stress -p u:u; can be given
by
p u‘u‘ = puju. + pulu’ (14)
i i) i
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where
_ 172 .
mp = G ok I (13)
_ 1/2
mqp=Cupekp 1p - oand (16)
P eI scex 17
e = Hp YT T MPLRL L ()

Similar relations can be written for the viscosity
of the dispersed phase Hg (see Roco and

Balakrishnan (1985)). However. 1in the present
work we choose to define the eddy viscosity of
solids as follows:

Vg, T Yy /o (18)

where

0 =04 / og (19)
and

0. = th/DS (20)

% = Pst’Vs (21)
Appropriate expressions for 0. are cited in many
articles such as Peskin (1971). Picart et al.
(1986)., and Hetsroni (1982). og is a Schmidt

number and its value {s about 1.5 (Abou-Ellail and
Abou-Arab (1985)}).
7} In the for dilute

present approach

particulate flows the turbulence kinetic
energy equation {s written only for the
carrier flow. The solid phase turbulence
kinetic energy and turbulence correlations
are evaluated from the available solution of
the linearized equation of motion of a solid
particle after {ts transformation from the
real time to the frequency domain.

similar nature 1{.e.
dissipation, etc. can

8) Terms which are of
convection, diffusion,
be modeled collectively. The length-,
velocity- and time-scale which are
appropriate for the description of their rate
of change must be identified from the
physical interpretation of these terms.

9) The response function which shows the ability
of solid particles to follow the eddies {s
obtained from the equation of motion of
particles for different local dimensionless
parameter, ds/le and pS/pL.

10) To establish the degree of generality of the

proposed model validation tests were carried

out for air-laden and water-laden jet, and
air-solid pipe flow.
5. CLOSURE FOR THE MEAN FLOW EQUATIONS
¥With the modeling assumptions given in the
previous section, the steady state mean flow

momentum equations for any {low component, reads

Pk &, (auy i) 5?; g (ougitgy * agugugy)



—_
AL,

d ; —_—— - — -
* axj("x“"h N S & Sl ST eL CNTN ey ;)

* GKJ’ (agugy + aug )] + (%_ji * ﬁ:ﬁ”

= Axlaby, + aby, v ae)- B (OPK *RPrapy)
L TE
T PeE R R )
(22)

3 - —
* E (GKTKIJi) * (kg

In Eq. (22) there are 16 correlations, half
of them in the production "large eddy” range of
the spectrum. The terms are modeled following the

criteria: 1) Physically correct behavior, {i)
Minimum  number of empirical functions and
constants, and 111) Comparisons against

experimental data over a wide range of conditions
are required to check the validity of the model.

The turbulent stresses caused by the large

and small size energetic eddies, -pLuiuj and

-pLu;us. are defined by Eqs. (12) and (13). The

correlation between u; and u} is weak when { # §.

This finding will be explained in the next
section.
The collisfonal effect correlations are
modeled after Launder (1976):
quguL = - C P (EKE) (u, .y 2 u;,.a)
K1YKj 5 e’ (ki &, “Ki%
PR a —r——r) (23)
KiTK1 & "Ri%
where C:S Is a constant of a value of about 0.1.
Similarly
TR = O O G,
J KT P
+ oo 9 Toa) (24)
K3"K1 @ UKi%K
T - .
where C°5 must be optimized by comparison with
experimental data. The fluxes in (23) and (24)

can also be collectively modeled as:

—_—

Ok Yk “XKki%j =
t

-c i vt 3 t
¢5=_K(UK1'UKI & K%

t t

d t ot -
TR El—uxi"}() (25)
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The diffusion fluxes namely akuki. a*uki . etc.

are modeled using Boussinesq approximation as:
” -

- T - (2
aaK i

while

— k7 %

%Y1 T T 3 27
oaK i

Similar expression can be written for ;;G;ﬁ and

aku&i.... etc. However, according to our

assumptions, especially those concerning the void
fraction fluctuation at high frequency a™, the
fluxes 1in Egs. (26) and (27) can be modeled
collectively as:

. -
tt Ktaak
-au, =t R (28)
'S Tox %,

The solution of the two transport equations
(for kP and kT) would require also a description

for the length scales. This point will be
explained {n more detajls in the next section.

The fourth group of terms with the void
fraction-shear stress turbulent correlations
contains the laminar viscosity as a multiplier,
and will be neglected due to its smaller order of

magni tude.

The pressure effect contribution to the mean
flow equation consists of two groups. Each
contains three terms. The first of these terms is
the mean pressure-void fraction. The second and
the third terms are the pressure-void fraction
correlations which can be modeled after Elghobashi
and Abou-Arab (1983) by

- (“ka *apy) = ¥t ¥ (29)
where
172 t ot
Y= Caapy kT e
and

¥, = -C 172

K . t t
2 +4°K YkmK

The values of the constants C 3 and C¢4 are about

[
unity.

The second correlation in the second group of

terms can be also modeled following Launder (1976).
The final form is

DK e K
axi

|

F#

= Py (}%)K f%‘“}iiaé

Py * Py



auKl

ox,
i

Ki

%, ) (30)

t t t T
+ oy (0.8 upyoy - 0.2 upyey

The values of the constants C’1 and C¢2 are 4.3 and

-3.2., respectively. The modeling of these
correlations suffers from the embodied assumptions
concerning the velocity and length scale
description. It would require a large number of
transport equations to model accurately each of the
above correlations

The f{nteraction term (IKi)_K for K = L

{liquid) and -K = S (solid) is modeled for dilute
suspensions with particle Reynolds numbers less
than unity:

- 2 - - -

(T g = - (18w 7dg) [l -~ vg;) g
T SN WO ¥ e 6 - BT
oP UT axi aoP aaT axi

oS s as  %as

where the first term is the drag interaction for
particles in the Stokes range. The second and
third terms are the turbulent fluxes due to the
relative motion between the particles and fluid.

The gradient transport model with the exchange
i t

coefficients Vip and VT corresponding to the

production and transfer ranges is adopted for

these fluxes ( TR T ag Vg - and

°§ uéi)‘

If only single velocity scale 1is chosen for
the whole energy spectrum, kL' there will be only

one momentum exchange coefficient v instead of

Lt
vpanrd v p
v v
LP LT
eSO F T T (32)
Uas Gaas

6. CLOSURE FOR THE KINETIC ENERGY EQUATION

In
energy

turbulence kinetic
"kL" (turbulence

the present work, the
for the liquid phase

velocity scale) is obtained from an exact transport
equation (Eq. A5 in Appendix A), and the length
scale "1" is described algebraically. The kinetic
energy equation A5 contains a large number of
turbulence correlations. In order to obtain an
engineering turbulence model. {t is sufficient to
consider the principles and the assumptions given
in Section 4.3. By engineering turbulence model,
it 1is meant, a physically correct model with
minimum number of empirical coefficients.
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The first group of terms in the k-equation
(Group #1) is the convection of the total specific
kinetic energy., where

O Gkp Mg (33}
ax,  ox, ax
J J J
Diffusion transport of k is composed of two
main parts. The first part (Group #2) is the

velocity diffusion and it contains the 3rd order
velocity correlations. while the second part (Group
#3) is the pressure diffusion with the
pressure-velocity correlations. The modeling of
the velocity diffusion part is obtained as follows:

@ uuu .=~ P ELE fEEE (34)
PL O YLVLiVLs T T PLAL TP &
%y Jj
and
p‘W‘TPp-i’L_T&L_l (35)
e Wl O 8 G 1L T B
o J
k
P T
where % and o, ere the turbulent Prandtl/Schmidt
numbers for the kinetic energy in the production
and transfer ranges. To reduce the number of
empirical constants and the number of governing

equations the above two correlations are modeled
collectively as follows

- ut ut ut - -p il'_t_fk_l: (36)
PLULiMLitLt T TPLL Top 3
where o, ts of order of unity.
The presure diffusion term |is negligible

relative to the velocity diffusion (Hanjalic’ and
Launder (1972}))

Mixed and higher order correlations {Croups #3
and #5) can be neglected according to the modeling
assumptions stated and discussed in section 4.3 of
the present paper.

The production terms are divided into two
groups. The first group (Group #6) is common for
single and multiphase incompressible flows,

du 3,
P, & au, e i + pa, u u o ki and can
L% YLitLj & L Mty T
be modeled collectively as follows:
du a
- .t .t Li = Li (2 -
PLOL MLty " BT “L“L[(axj ) (37)

The physics of turbulence and the
consideration of the spectral energy transfer
assume that the production is only due to the
interaction between the mean flow and the large

eddy. Since the uiiuij correlation is for medium
size eddies which have almost no direct interaction
with the mean (low, it results that the



contribution of these smll eddies to the
turbulence production via the mean field is smaller
than that of the large eddies. This

means also that UEIUEJ correlation s weak if { »

J. 1l.e. 1t 1s only of significant value if the

w2 o2
turbulent normal stress components (uLi 1 =1, 2,

3) are considered. According to Hanjalic' et gl.
(1979) multiple scale model the turbulent viscosity
is defined as follows:

- 38
/P = G K (p/epp) (38)
- 3%
where kL = kLP + kLT ( )
and C, = 0.09 (39b)

This equation can be rewritten as
2

so =c p, lrMe
My L u € p € p

0.5 05 o a0
= CupkLp Yip * Curiir it = (ip + mp)/p (40)

where C P and CLT are two additional constants and
[
dditional length scales
ILP and lLT are also two addi ng

for the large and medium size eddies. The length
scale can be related with the following relations
(from Eqs. (38) and (40))

It =€ 1p Opiqp)

Since the ratio kLT/kLP is of the order of unity
be 11
and lLP > ILT' the constant Cl should smaller

than unity. Thus 1f the multiple time scale model
Is not recommended (due to 1its large number of
additional constants) an alternative approach is to
consider a multiple velocity scale model. 1In this
model only two differential equations for kLP and

kLT have to be solved. The length scales can be

obtained by using the previous relation Eq. (41)
and any expression for the length scale of the
large eddies lLP‘ for example that used by Roco and

Shook (1983) for cylindrical pipes.

(41)

The modeling of the additional production terms
(Group #7) is achieved as follows:
T R L (2)
YL Ox; T P & &,
aS

B R SN .
ALy ¥, T T & 3
and both collectively as

(qyu —+ @u ) fﬁ& - EEL fBE fik (44)

i A W I ' "o B

1

4

i are modeled in

—— a“Li L
Terms like auy 5;;—-and ajury ij

a similar manner to that of the above terms i.e.

oy v, Sy ; Bay

Tl ey e M H L
LUyt oY &, T oo o &
The extra production terms  (Group #7) can be
written in the following form
v, 8a dp du
Le S 9 B
Extra production = o (ax. + uLj v )
aS i i J
GEEE G ) )
aS " J
Su'. 8u du’. &u)’
- Li Li - Li Li
The terms Py 5;:— 5;;— and Pray v 5;;— 6xj in

Group #8 represehts the dissipation rate from large

eddies ELP and transfer eddies eLT' Since viscous

dissipation is mainly confined to

eddies and to simplify the mathematical
mltiple time scale turbulence models, Hanjalic' et
al. (1979) have. assumed that there is an
equilibrium spectrum energy transfer between the
dissipation and transfer region {.e., =€

single

€
total

where e is the dissipation rate in the

L
scale scheme. Thus

du’ . Ju’ au.
= L1 L _ - = 11.9
Pl B, W = TP Ep = "1“1_7(? (47)
and
P a v au‘.‘li E = - puy
LMLV =T PLoy & T (48)
where
€ pn = kl's/l and
P = Sp *kp /Y p
1.5
‘ot = Sr ¥ /1y

In equation (47) 2 spectral cascading between the
production and transfer eddies {s considered
(Hanjalic' et aj. (1979)). This equation gives an
additional relation between the spectrum scales.

The correlations between the fluctuating
velocity component and the fluctuating friction
forces (interaction terms in Groups #8 and R10) are
due to fluid-fluid and fluid-solid drag force in
dilute flows. The friction interaction terms due
to molecular collfsfon (fluid-fluid finteraction,
Croup #8) are given above by Eq. (47) and (45)
The form of the correlation between the fluctuating
drag force and the velocity fluctuations depends on
the expression adopted for the drag force, The
viscous drag correlation (VDC) in Group #10 for
Stokes flow over particles in dilute suspensions
reads




vic = - =5 (a4~ s
d
s
! (49)
- g (aghy t by
s
where:
T L T (49b)
Al = asui + asui o _
By = uf [y - ugy) * upry (o ymugy) (45¢)
Ay = agul (v ~ug;) * aguy (up~ugy)  (494)

The first correlation group Al (Eq. 4%a) can be

approximated using the gradient type assumption.
The second correlation in this expression (49b) is
that due to the relative slip fluctuating motion

uL‘(uL‘ - uéi) and uii(ui‘ - uéi). These can be
modeled wusing similar approach to that of
Elghobashi and Abou-Arab (1983) but with some
modifications which allow for different
particle-eddy interaction according to their
relative size. These modifications are based on

the spectral analysis carried out by Dingguo (1987)
for the response of the particles to the turbulent
fluctuations of the carrier fluid. For very large
eddies x << kg

ug = (vg), = (), 2 - exp(-i(xy t-B)) (50)
where x is the wave number; Kg is the
Basset-Boussinesg-Ossen wave number defined as

l/dS: (vé)x and (vl'_)K are the solid and liquid

velocity components with the wave number x: a 1is
the amplitude ratio of oscillations

2 2.0.5
a = [(1+a,)"+aq)] (51a)
and B is the phase angle of oscillation
-1
B = 1g [qz/(l + ql)] (51b)
The expressions of q, and q, are
s 1-s
I+ = s+0.5
q. = 42(s+0.5) ' (52a)
! 81 2 Nso Mg 2
o (2NS + }:) + (1 +
(s+0.5) 2 J2(s+0.5)
N
9(1-s 2 S
_i___l_i (2N *+ 3 )
(s+0.5) (52b)
27 2 Nso SNs 2
2(2]‘5’]:) + (1 + )
(s+0.5) 2 {2(s+0.5)

155

with the following dimensionless parameters:

s = Pg/PL
v K xRe
STl |l
uLxds
where
kp = {s the wavenumber of the most energetic
eddies,
Re = Reynolds number based on lT‘ and
NS = Stokes number.
For small eddies with wave numbers k >2 Kg:
the particle response can be described by
K P
$.3 7L
L= : = ' =) — 53
ug = (vg), = () (507 58 (53)
For the intermediate size eddies Kk ¥ Kg one
can use {50) with
a=: and (542)
B = [an-l (s) (54b)
1f the fluctuating slip velocity wi is defined
as
= uL, - Y 55
LT - T B (%)
-2 2
then the ratio of the mean square W, and vy
becomes
272 _ =2 _ o7 2, , 2 c
wilrul = (ugy - 2u0pvs; te) N (56)
with
— .2 3 T2 _.2,.2
Uugy = 3 YLy O ugy My v /uy)
1 .2
=3 Y} (1 + rSL rRL) (57)
The values of rSL and rRL can be obtained by using

the preceding solution (Eq. 50):
Ks x
T, =[J° aZEL(K)dx + f: (—%)65_2EL(K)dK]/J:£L(K)dx
S (58)
or
2h -1
rSL = ;(F7T7 tan (KS/nT) (59)
where
18v
- A 18 2 - L
h= Ky = (s+0.5) (kg/xp) /Re. A k; ; O.S)di
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Figure 2. The effect of eddy-particle size ratio
(xs/nT) on the particle response to the

eddy fluctuations (Es'f/EL'f)

and

Tpe = [J:S (32'1) EL (%) d«

X
+ r (=) s711)? E (x)dx] / r E(x) dx  (60)
KS [+]

where a; = (1% + 12)%°% ang E (x) is the liquid

energy spectrum function for which any arbitrary
form can be adopted, for instance

u.2
2 Li 1
E) =52 —s (61)
) 14 (x/np)
Figure 2 illustrates the effect of
eddy-particle size ratio expressed as xs/nT on the
{fo I' = u. 2/u' 2 which indicat th ticle
ratio sL™ Ys; L1 1 ndicates € parti
response to the eddying motion. It can

be noticed that high values of xs/ncT ({.e. smll

particle or large eddy) the particles follows quite
well the eddy motion.

Substituting the expressions for rSL and T

{Eqs. (58) or (59). and Eq. (60)) 1into Eq.

the correlation A2 can be obtained

RL
(57).

1 .2
A2 =35y (1 - rSL + rRL) (62)
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The above analysis applies equally well to the
large eddies as to smll eddies. The energy
spectrum function EL(x) for a two-phase flow is

given by Al-Taweel and Landau (1977). However,
since its form is not essential (Dingguo (1967)) it
is sufficient to adopt any simple form as that
given above by Eq. (61). It is clear from the
above analysis that the particle response to the
carrier fluid fluctuations fis a function of the
density ratio pS/pL. size of 1{interacting eddy

relative to particle size xs/x and Reynolds number

based on the size of the most energetic eddies of
the flow. An analogous expression to that given by
Eq. (62) is that based on the Chao's solution (see
Chao (1964)). This solution can be considered as a
substitution of Dingguo's solution only for x < Kg

i.e. for fine particles.

The last term to be modeled in the VCD group,
A3. i{s separated into four correlations:

]
42 [{agu) ju;
S

4, = -

3 *aghiupy)

T1 T2

™ (agupjug; + aguiug)) (63)

T3 T4

where the triple correlations T3 and T4 are modeled
in a similar manner to that wused for the
calculation of T1 and T2 by using Egqs. (23) and
(24). thus

8, a,
e —_— L1"S
Th=agujury = 'Cis O p/epp) (2u] v o )p:
T2 = agurur, = <Ch (k. /e, ) (FaTar, —LiS,
SUL1YL 4 os (ke T L't o T
du.,a.
_ P —— g g
T = Cgs (kg p/ep p)uf ug; )
o % )
si'll Ta
R s
- ol — 519 — L1%s
T= Coq “‘LT’%T”“L:”SIT&T * g T )1
(64)

Th?se correlations can also be collectively modeled
using single velocity and length-scale. and total

kL and €L The first two and the last two terms
yield, respectively:
2k au( ut
L t ot Li
Tl + T2 = —_—
Cos e (o gy, ) (652)
1
ok aul ot
L tot S17S
T3 = —_—
*T4=Cy < (u jug; S



* “;x“l‘.i o) (65b)

The terms in Croup #9 of Eq. AS are of
diffusive and dissipative nature. The diffusion
terms as they appeared in Group #9 are multiplied
by the molecular viscosity and therefore will be
neglected due to their relatively small magnitude.
Other higher order correlations and mixed
correlations in this group are also neglected
according to the modeling principles stated
previoulsy in section 4.3 and as they are also
miltiplied by the molecular viscosity.

By substituting all previously modeled terms
into the exact form of the turbulence kinetic
energy equation, and rearranging these terms, one
obtains the simplified modeled form glven in
Appendix B (Eq. B2).

Since the present model is based on an exact
equation, namely the turbulence kinetic energy
equation, and the modeled form of this equation has
no adjusting coefficients it is expected that the
model will generally produce good results and have
less limitations compared to other models. The
only modeling assumption is that of the Boussinesq
gradient type, which generally is accepted. The
correlations that requires questionable
semi-empirical modeling assumptions and
fntroduction of empirical constant are (i) fewer in

number (for aLuLiuLJ and al'_uéiul'_j). and (11) for
terms having an order of magnitude smaller (by

ratio a'/a) compared to other main terms in the
k-equation. The only significant new correlation
used in the present closure is that due to the
relative motion between the phases. This is
modeled with less restrictions and taking Into
consideration the effect of the particle
diameter-eddy size ratio on the particle response
to the eddying wotion. The limitation of the
present one-equation k model closure 1{is the
algebraic formulation for the length scale. Since
there are many factors affecting this length scale
and since it is even difficult in many practical
applications to give a unique and accurate
description of the length scale., the use of a
transport equation for the length scale in the
two-equation model of Elghobashi and Abou-Arab
(1983) is expected to give better results with fine
particles (ds < 7). However. it should be noticed

that the former model and any other similar models
contain some empirical constants specific for
various flow conditions, and they require the
solution for an additional transport equation. It
can be expected that the present mode! combined
with an appropriate length scale equation e.g.
dissipation rate equation will simulate better most
of the important . features of mul tiphase turbulent
flows, particularly the fluid particle interaction.
In that case the number of closure transport
equations will increase to three (if two velocity
scale, kP and kT' and one length scale transport

equations) or four transport equations (if two
velocity scales and two length scale, lP and ]T'

are adopted).
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Figure 3. Computed and measured [20] mean velocity
distribution of air in air-solid pipe
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Figure 4. Predicted radial distribution of the
turbulence intensity of air in air-solid
pipe flow using different turbulence
wodels (keynote as in Fig. 3).

7. SAMPLE OF RESULTS

Figures 3 to 6 compare the present predictions
with LDA-measurements for single and two-phase
turbulent pipe flow (see Maeda et al (1980)) and
turbulent round water jet laden with uniform-size
solid particles (see Parthasarathy and Faeth
(1987)). Both flows are oriented vertically
downward. These flows are axisymmetrical. The
concentration profiles are given as {input data
based on experimental results.

In these flow situations the average eddy size
ee was varying {rom about one ds to few hundreds



ds. The corresponding representative eddy size in

the transfer range was only a fractifon of particle
diameter dS in the pipe flow case. In the Jet flow

case the mean size of large eddies and the
Kolmogrov length scale were also varied in a wide
range. These scales are field variables. and they
depend upon the flow configuration, location in the
flow domain and particle dimensions.

Two-phase flow solutions were obtained by
solving the flow governing equations in their
modeled form which are described in the previous
section and given in Appendix B. The numerical
procedure used for these predictions is based on a
developed version of the Genmix—Code of Spalding
(1977). However, since the main objective of this
paper 1is to give a complete description of a
developed turbulence closure for multiphase flows
and due to the space limitation the details of this
humerical approach will not be given here. The CPU
Time for the two considered flow cases was about 4
minutes on a VAX 760 Mini—Computer and 2 minutes on
IBM 3084,

Case I: Gas-Solid Vertical Pipe Flow:
Figure 3 shows a comparison between the

experimental data and the present predictions using
five different models of turbulence namely 1.
One-equation k-model of Roco and Mahadevan (1986),
2. One-equation vt—model of Roco and Balakrishnan

(1985). 3. The k-equation as given in the
two-equation k-¢ model of Elghobashi and Abou-Arab
(1983). 4. The two-equation model of Elghobashi and
Abou-Arab (1983). and 5. The
present one—equation k-model. The figure displays
the mean axial velocity distribution in the fully
developed zone of the pipe flow for single and
two-phase cases. The 'differences between the
predictions of all one-equation turbulence models
and experiments is mainly caused by the general
algebraic expression adopted for the turbulence
length scale which was not optimized or adjusted.
In the present computation the concentration
profiles are assumed based on previous experimental
data. The {nlet concentration distribution {s
taken to be similar to that given by the best curve
fit after the experimental data of Soo (1967).
Figure 4 compares the calculated turbulence

|7 2 -
intensity defined as u (ri kL) / u with 1ts

measured values. The near wall treatment is based
on a wodified form for the law of wall (see
Abou-Ellail and Abou-Arab (1984), Lee and Chung
(1987)) and the particle slip condition at the pipe
wall.

The present model as compared with the one
equation models of Refs. [12] and [27] predicts
slightly higher values for the mean flow
quantities. However, {t must be mentioned that the
last k-models contain empirical constants in the
dissipation term of the k equation. Concerning the

fluctuating flow quantities the present model gives

slightly ©better results for the turbulence
intensity in the near wall region than other
one-equation models. The expression for the

turbulence length scale was not optimized. It is
also expected that the current model will give
better predictions for coarse (ds > n)} and heavy
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Figure 5. Computed and measured [23] wean velocity
distribution in water-soclid jet flow.

L 1 1 1 |
(AT = GLASS BEADS- WATER]
© Experimentai [23]
--- 2Eqs-k-e modeifi2)
0.08 —— Present k-modal ~
=~ 63 ©2.4.10-2
\\o ds s 0.5mm
- N\ _
\NO
AN
004 }+ -
- —
No
0.0 i 1 1 ] 1 1
0.0 0.08 0.6 0.24

158

v/ 2

Figure 6. Predicted radial distribution of the
turbulence intensity of water in water-
solid jet flow.

suspension flows for which no set of comprehensive
2D data is available for comparison.

Case II: Turbulent Round Water Jet Laden with
Uniformsize Solid Particles
Comparison between experimental data and
numerical predictions of different turbulence

closures are given in Figures 5 and 6.

The two-phase flow measurements on velocity,
concentration and turbulence correlations used for
comparisons are taken from Parthasarathy & Faeth
(1987). Different axial locations within the round
Jet, between eight and fourty jet diameters from
the injection nozzle are
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Figure 7. Radial distribution of solid phase
concentration in water-solid jet flow.

considered. The radial distribution of solid
concentration given in Figure 7 are at eight
diameters from the nozzle.

The comparison shows that the two-equation
two-phase k-e¢ model of Elghobashi and Abou-Arab
(1983) describes both flows better than the
one-equation mass/time averaged turbulence model .
However., it is important to mention here that the
presently developed closure uses only one transport
equation and without adjusting any empirical
coefficient. At the same time, the present closure
is in its early stages and more refinements and
validation tests are required. especially for
coarse particles two-phase flows for which one
would expect that the present k-formulation will
provide {mproved predictions. The difference
between the predictions of the mean and fluctuating
flow velocity components as obtained by the present
k-formulation and that of Ref. [12] depends on the
particle size relative to its surrounding eddies.
Figure 8 illustrates this difference at 1two
different loading ratios for the pipe flow at a
radial distance {R - r)/R equal O.1.

8. CONCLUDING REMARKS

The turbulence closure presented in this paper
for dilute suspension flow is based on the fluid
turbulence kinetic energy equation. The main
features of this model are:

i) Two velocity scales are adopted in computation
for large and medium size eddies,
corresponding to the turbulence production and
transfer range, respectively. They are
expressed into the governing equations by a
specific local mass/time averaging On this
basis the spatial and temporal transfer rates
of the thermodynamic quantities and the
particle-eddy interaction are better
estimated.

20
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(b)

Figure 8. Differences between the present
k-formulation and that of Ref.
{12] for different mass loading ratios
L.R.: (a) fluctuating and (b) mean
axial velocity.

ii) Spectral analysis of the interaction mechanism
between particles and most energetic eddies
provide analytical correlations for closure.
The particle response and the modulation of
turbulent eddying motion 1is given as a
function of the particle-fluid density and
size ratios.

‘1i1) To keep the number of transport equations of

the turbulence closure ard the number of

empirical constants as minimum as possible.
the length scales 1, and 1. are described

P T
using algebraic expressions. Relations
between these scales (E-s. 40 and 47) are

suggested.

iv) The model does not introduce additional
empirical constants to the closure of the
velocity scale equation.
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APPENDIX - A

Mass/Time Averaged conservatjon Equations

Mass averaging the conservation equations of mass
and momentum over-a flow component (K) one obtains
a new system of equations for mean velocity.
concentration and kinetic energy of turbulence.

The point {nstantaneous conservation equation
can be written for any flow component (K} or for
the entire mixture in the folowing general form

':;—‘(W) + 9 (pju) + voJ - S =0 (A1)

density
velocity vector

where:

transported quantity
flux vector for ¥

" -€ | o
[

source term

Let assume ¥ = u .. By splitting each flow

property into mean and turbulent fluctuating

component (Gk‘ + u;i) and mass/time or double time

averaging the equation (Al). one obtains the
following momentum equations in the i-th direction
for an incompressible phase (K) without mass
exchange with other flow components (see Roco and
Shook (1985)):
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K 3t ‘IKUKi*T %KYkt K & UK VK
Time Rate

Mean Flow Convection

T
e 2%
=

. ffg .
x| Py

Pg

Pressure Effect

= — a ,—=~ ., tt
=i~ ae GPcark) ¢
Body Force

g .- = —_ 0t t
#—[ T -p . u
I, KK KoK
] “jt KK
Frictional
Effect

Inertial
Effect
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t t, ot t —
~pax(ugiv) * Ty 1 Ugydok (A2)
JL Tnteractions
Collisional Effect with (-K)
where
K = phase (or generally a {low component )
fk = mass/time average of f over K
{,§ = 1,2.3 (Cartesian coordiantes)
bKi = body force in the i-th direction
(XKi)_Kz projection in the i-th direction of the
interaction vector (E;)_K
The Iinteraction term as it stands for

solid/liquid drag 1s given by

IuLy-uSy|(uLy-uSv)

= 0.75a 7
(1-ag)

(Ig) = Oyl sPLTdg

(A3}

This drag term takes a simple form for Reynolds
numbers less than unity

(Ig) = - Upyds = “s(‘&i’dg)(“u’“sﬂ (Ad)

The transverse effects caused by the presence of
other solid particles, Saffman force and Ho and
Leal inertial force are neglected. Their
importance is small in dilute suspension turbulent
flows with fine particles.

Fquation (A2) contains terms due to the
unsteady flow, mean flow convection, diffusion.
pressure, body force, as well as frictional.

inertial and collisional effects. The mean form of
the turbulence kinetic energy governing equation is
obtained by subtracting from the steady state
instantaneous momentum equation for a component K =
L the corresponding mean flow equations, and then
multiplying the resulting difference equation by

(u}'(i + u"Ki)' By averaging one obtain the kinetic
energy equation for a flow component K = L. This
equation reads
.2 W2

PO, (325113 + auKi/2) + _Q_{p a.(G, ) up

KKK ) B B ) S Sl S ¢
Group #1 (Convection} Group #2 (Velocity

Diffusion)

AT T e Ty Ty S Sy i Y

Uy Uik ¢ UKgUKiUK Uy Uk Y )
a —— ——r
[ax_".1 (PraxUK YKk * ayuy Uk UK )

Group #3 (Higher Order Correlations}

+

other 4th order and minor terms)]=

+



- a3 —s= = -
- = . P+ u P
o Gxi Uik Pkt %Pk T Yk TR oA o
Group #4 (Pressure Diffusion) + PVK — ¢ anKuK ax ax + mixed
J J Jj correla-
tions
v “ . Group #9 (Extra Dissipation & Diffusion
Quy P..a“}(x . P.a"xi N P..a“m ( )
‘aK(PKax*Kaxi K ax, K ox, TOT e _
Ui ks g *ug gy (43)

Group #5 (Extra Production and Transfer)

Fry Ty, I
- (g &, * Y% ax ax, uMQK—

Group #10 (Extra Dissipation)

APPENDIX B

ap& apk The Modeled Form of the Turbulence Kinetic
o K oo K Energy Equati
"y Be, KK B

The steady-state turbulence kinetic energy equation
— for the liquid phase (K =1L) is:

au au -
- —_ du
(PR B P ) N i B T AU T
J J L1y 3%, T 3, o 3%, * %M 2y
Group #6 {Production) J J k7§
Convection Diffusion Production
- A T— o’ & s e
[“m KKy 3%, " UK5OKYKi X R Ltaal.( S, LtaaL(u T,
j 3 aus Ox, ‘At ULy Bx o.g o, Li Bx
Group #7 (Extra Production) J J J
_ _ Extra Production
TR ot T ek
i TKYK § » Ki dx, - pa
i Kj axj J i j pLa.LeL
_ Dissipation
aPk -
i G aXu Ki) —'* minor terms ] . 1&11 G - )UL_tﬁ
d2 YLi Ysy %5 ox .
s i
o Extra Dissipation
N Ua“ a“lu+p—v Ny Mgy ba 18
PRARYK By ax " PR T y = agk (1-Tg T ) = —5= (T1 + T2 - T3 - T4) (B1)
Group #8 (Dissipation) ds

where the expressions for rSL' rRL' Ti. T2, T3 and

T4 are given in the text.
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